
preliminary draft, March 17, 2007 18:29 preliminary draft, March 17, 2007 18:29

TUGboat, Volume 0 (2060), No. 0 preliminary draft, March 17, 2007 18:29 1001

Conventional Scoping of Registers – An
Experiment in εXTEX

Gerd Neugebauer

Abstract

TEX provides groups as a means to restrict the visi-
bility of registers. This construction is well known in
the TEX world but does not coincide with the groups
as known from other programming languages. If we
refain from string the register value in a global array
we can come to the alternate solution of storing it
in the control sequence used to access it. With this
variant we can provide a meas to define an arbitrary
number of registers which follow the same scoping
rules as the variables in Pascal-like languges.

εXTEX is a reimplementation of TEX in Java. It
is developed with the extensibility and confgurabil-
ity in mind. The idea of an alternative storage for
registers can be implemented in εXTEX as an exten-
sion. It is shown which steps are required for such
an implementation. In this course the extensability
of εXTEX is demonstrated.

1 Storage in TEX

TEX stores the values of registers in TEX memory.

2 Registers and Scoping

plain.tex prvides macros to handle the allocation
of registers. For this document we want to restrict
our considerations count registers. Here the macro
\newcount can be used to allocate a new count reg-
ister:

\newcount\abc

{\abc = 42

\showthe\abc

}

The

{ int abc = 42;

printf("abc  = %d" , abc);

}

3 εXTEX

4 Writing a New Primitive for εXTEX

According to our considerations we want to have a
new primitive which behaves like a count register
but stores the value within the code and not in the
context. In addition we need a primitive \integer
to dynamically create new such integers. Then we
can write the following TEX code:

{\ integer \abc = 42

\showthe\abc

}

First we start with implementing the code for
the count equivalent. This code needs to have sev-
eral properties to behave like a count register:
• It needs to assign a new value when executed.

This means that
\abc=123

works if \abc has the meaning of the new prim-
itive.

• It needs to act as an assignment; this means
that \afterassignment as to be taken into ac-
count. This mean its token is expanded after
the assignment has taken place.

• It needs to be advancable. This means that the
following works:
\advance\abc by 123

• It needs to be multiplyable. This means that
the following works:
\multiply\abc by 123

• It needs to be dividable. This means that the
following works:
\divide\abc by 123

• It needs to provide the count value upon re-
quest. This means that the following works:
\count0=\abc

• It needs to provide value for primitives \the
and \showthe. This means that the following
works:
\showte\abc

• It needs to expand to the tokens making up its
value.

5 εXTEX

The εXTEX project (→ http://www.extex.org) has
the aim to provide a reimplementation of TEX. The
implementation language for this reimplementation
is Java. The major design decisions put the modu-
larity and configurability into the center.

6 Providing a Definition

To start with we create a new class. This class lives
in a package named extex.tutorial. In addition
we use a bunch of imports from εXTEX. Since the
imports are usually filled in by the IDE, we omit
them (like the comments which are assumed to be
filled in by the reader).1

package extex.tutorial;

import org.extex.core.count.Count;

// a bunch of more imports omitted

1 To be honest, the exact package structure of εXTEX is
subject to some changes until the final version 1.0 is released.

http://www.extex.org


preliminary draft, March 17, 2007 18:29 preliminary draft, March 17, 2007 18:29

1002 preliminary draft, March 17, 2007 18:29 TUGboat, Volume 0 (2060), No. 0

Next we declare the class. It is derived from
an abstract base class which takes care of the as-
signment. Each of the properties we want to have is
declared with the help of an interface. Advancable
describes that the primitive can be used after the
primitive \advance, Dividable describes that the
primitive can be used after the primitive \divide
and so on. Each of these interfaces contains a single
method which needs to be implemented.

public class IntPrimitive

extends
AbstractAssignment

implements
Advanceable ,

Divideable ,

Multiplyable ,

CountConvertible ,

Theable ,

ExpandableCode {

Since we want to store a count value with the
code we first create a private field. The data type
Count encapsulates a count value. It has the meth-
ods to access and manipulate it. In it’s core it con-
tains a long value to store a number in.

private Count value = new Count (0);

But before we come to implement the interfaces
we have to define a constructor. The constructor
takes one argument – the name of the primitive –
and passes it to the constructor of the super-class.

public IntPrimitive(String name ) {

super(name);
}

Now we can start with the first method assign.
It takes four parameters with the following classes:
Flags contains the indicators for the prefix argu-

ments like \global. The primitive can consume
the flags and react differently upon their values.
Since out primitive does use prefixes this argu-
ment is simply ignored.

Context contains the equivaent to the TEX mem-
ory. Anything contributing to the state of the
interpreter is stored in the Context. This Con-
text is also stored in a format when \dump is
invoked.

TokenSource provides access to the scanner and the
parsing routines. It can be used to acquire fur-
ther tokens or even higher order entities.

Typesetter contains the typesetter of the system.
The typesetter produces nodes which might be
stored in boxes and finally sent to the backend.
These parameters will come back for the other

methods.

public void assign(Flags prefix ,

Context context ,

TokenSource source ,

Typesetter typesetter)

throws InterpreterException {

source.getOptionalEquals(context );

Count newValue = CountParser.parse(

context , source , typesetter );

value.set(newValue );

}

The implementation first consumes an optional
euqal sign and then parses a following count value.
Finally we can set the internal count to this new
value.

Assume that we have assigned the new primi-
tive to the control sequence \abc – somethong which
we will reveal later. Then we can do the following:

\abc = 1234

This assigns simply a new value to the vari-
able. But we have also used the infrastructure of
an assignemnt. Thus the token stored in the token
register \afterassignment are inserted after the as-
signment:

\afterassignment =\x

\abc = 1234

\y

Right now we can assigne a new value to the
variable. Since we want to see what we have done
we implement the method the which converts the
value back into tokens to be used by the primitives
\the and \showthe.

public Tokens the(Context context ,

TokenSource source ,

Typesetter typesetter)

throws InterpreterException ,

ConfigurationException {

return value.toToks(context );

}

Next we have to take care of \advance. In
εXTEX the implementation of \advance decouples
the operation from the implementation of the primi-
tive. Tus it is posible to add further primitives which
can be used after \advance. This goal is reached by
providing the interface Advancable. When the to-
ken as the meaning of code which implements this
interface then the control is passed to the methods
defined in the interface to carry out the operation.
We use this feature to make our primitive applicable
for \advance.

The method used the parsing routines in εXTEX
to acquire the optional keyword by and the value for



preliminary draft, March 17, 2007 18:29 preliminary draft, March 17, 2007 18:29

TUGboat, Volume 0 (2060), No. 0 preliminary draft, March 17, 2007 18:29 1003

a count register. Tis value is added to the variable
stored in this primitive.

public void advance(Flags prefix ,

Context context ,

TokenSource source ,

Typesetter typesetter)

throws InterpreterException {

source.getKeyword(context , "by");

Count by = CountParser.parse(

context ,

source ,

typesetter );

value.add(by);

}

The same technique used for \advance is used
for \divide as well. Thus we just have to implement
the associated interface Dividable and provide the
following method:

public void divide(Flags prefix ,

Context context ,

TokenSource source ,

Typesetter typesetter)

throws InterpreterException {

source.getKeyword(context , "by");

Count by = CountParser.parse(

context ,

source ,

typesetter );

value.divide(by);

}

And once again the same trick for \multiply:
We implement the interface Multipliable and pro-
vide the following method:

public void multiply(Flags prefix ,

Context context ,

TokenSource source ,

Typesetter typesetter)

throws InterpreterException {

source.getKeyword(context , "by");

Count by = CountParser.parse(

context ,

source ,

typesetter );

value.multiply(by);

}

Converting into a count value is expressed with
the interface Countconvertible which has one me-
thod convertCount. This method delivers the count
value as long. Since we have the variable in our
private field we can just take the value from there.

public long convertCount(

Context context ,

TokenSource source ,

Typesetter typesetter)

throws InterpreterException {

return value.getValue ();

}

public void expand(Flags prefix ,

Context context ,

TokenSource source ,

Typesetter typesetter)

throws InterpreterException {

source.push(value.toToks(context ));

}

This is all we need to do to implement the new
primitive.

}

7 Putting Things into Place

Now we are finished writing out new primitive as a
Java class. But how can we make use of it? First of
all we have to compile it with a Java compiler and
put it into a jar – say abc.jar. εXTEX is installed
in a directory. This installation diretory contains a
subdirectory named lib. All jars contained in this
directory are automatically considered when classes
are loaded. Thus we put abc.jar into this directory.

Next we make use of a quick extension mech-
anism to try out our fine new primitive. Later we
will use the configuration mechanism of εXTEX for
this ourpose. But now we simply use the dynamic
extension mechanisn which allows us to bind some
Java code to a primitive. To do so we need to load
the unit jx. Units in εXTEX are collections of prim-
itives. For instance there is a unit tex containing
the TEX primitives.

One of the primitives contained in εXTEX – i.e.
in the unit extex – is the primitive \ensureloaded.
It takes one argument in braces which is the name
of a unit and loads this unit of has not been loaded
into the interpreter before.

This primitive is used now to load the unit jx:

\ensureloaded{jx}

After the unit jx has been loaded we can make
use of the primitive \javadef provided by this unit.
This primitive is similar to te primitive \def. It
takes a control sequence and a list of tokens enclosed
in braces. The control sequence gets a new meaning.
This meaning is determined by the Java class named
in the tokes argument:

\javadef\abc{extex.tutorial.IntPrimitive}

Now we can use the primitive \abc as shown in
the beginning.



preliminary draft, March 17, 2007 18:29 preliminary draft, March 17, 2007 18:29

1004 preliminary draft, March 17, 2007 18:29 TUGboat, Volume 0 (2060), No. 0

8 Defining new Variables

The definition of each new variable with \javadef
is a little bit clumsy. We had the plan to define
any new variable with \integer. It takes a control
sequence and the initial value. This can be accom-
plished with a small definition of the following kind:

\def\integer #1{%

\javadef #1{ extex.tutorial.IntPrimitive }%

#1}

This approach works but it has the disadvan-
tage that his macro does not interact properly with
\afterassignment. The primitive \javadef is an
assignement. Thus the afterassignment token would
be inserted just after the definition but before the
intial value has been read.

To overcome this problem and gain some more
insight into the definition of primitives in εXTEX we
implement this primitive in Java as well.

public class IntDef

extends AbstractAssignment {

public void assign(Flags prefix ,

Context context ,

TokenSource source ,

Typesetter typesetter)

throws InterpreterException {

CodeToken cs =

source.getControlSequence(

context ,

typesetter );

IntPrimitive code =

new IntPrimitive(cs.toString ());

code.assign(Flags.NONE ,

context ,

source ,

typesetter );

context.setCode(cs ,

code ,

prefix.clearGlobal ());

}

9 Configuring εXTEX

10 Conclusion


	Storage in TeX
	Registers and Scoping
	ExTeX
	Writing a New Primitive for ExTeX
	ExTeX
	Providing a Definition
	Putting Things into Place
	Defining new Variables
	Configuring ExTeX
	Conclusion

